
js e -

f ? ! l f
TDA Progress Report 42-96

N89- 1 9 4 5 9 - October - December 1988

Wiring Viterbi Decoders (Splitting deBruijn Graphs)
0. Collins, F. Pollara, S. Dolinar, and J. Statrnan

Communications Systems Research Section p +&due
p e p ,fp’” 3 /

A new Viterbi decoder, capable of decoding onvolutional codes with constraint \
lengths up to 1.5, is under development for the &A key feature of this decoder is a \
subgraphs correspond to circuit boards, while the smaller subgraphs correspond to
chips. The full decoder is built from identical boards, which in turn are built from identi-

ment, test, and repair because it uses a single VLSI chip design and a single board design.
m e partitioning is completely general in the sense that an appropriate number of boards
or chips may be wired together to implement a Viterbi decoder of any sizegreater than
or equal to the size o f the module.

two-level partitioning of the Viterbi state diagram into identical subgraphs. The

cal chips. The resulting system is modular and hierarchical. The decoder is easy to imple- I

i
1

I. Introduction
A new Viterbi decoder [11 , capable of decoding convolu-

tional codes with constraint lengths up to 15, is under develop-
ment for the DSN. This article describes a novel partitioning of
the decoder’s state transition diagram that forms the basis for
the new decoder’s architecture.

The Viterbi algorithm is naturally fully parallel [2] . How-
ever, a fully parallel implementation of a large constraint
length Viterbi decoder requires an impractical amount of
hardware. The first question to be faced when building such a
decoder is what part of this parallelism to throw away. We
decided to retain a fully distributed architecture for comput-
ing and exchanging accumulated metrics, but to perform the
arithmetic computations bit-serially. The arithmetic compu-
tations are 16-bits long, so the decoding speed will be greater
than 1 Mbit/sec with a 20-MHz system clock.

In a fully distributed archi tecture , there are 2 K - 1 basic
computational elements called add-compare-select circuits [11
for a constraint length K decoder. When K is large, it is desir-
able to take a modular, hierarchical approach to organizing the
huge number of required elements. Many add-compare-select
circuits can be implemented on a single VLSI chip, and many
chips can be mounted on a single printed circuit board. The
full decoder is implemented by wiring together the required
number of chips and boards.

The main problem is wiring. How can the 2K-1 basic ele-
ments, each with two inputs and an output (going to two dif-
ferent elements’ inputs), be partitioned into chips and boards
without using too many pins per chip or too large a board edge
connector? This article shows first how pairs of add-compare-
select circuits group to form elements called butterflies. The
connection diagram of these 2 K - 2 butterflies is a deBruijn

93

graph [3] ; the butterflies are nodes in the graph and the edges
of the graph represent wires between butterflies. The rest of
the article shows how the set of butterflies can be split into
modules called boards and the boards split into modules called
chips, in such a way that a large proportion of the required
connections between butterflies are implemented internally
within the modules. The chips are all identical and the boards
are all identical. Furthermore, their internal structure does not
depend on the size of the decoder. and an appropriate number
of board modules and chip modules can be wired together to
make a decoder of any size equal to or greater than that of
the smallest module.

The constraint length 15 Viterbi decoder under develop-
ment for the DSN is currently being designed with 16 boards
and 512 chips. Each chip in this design contains 16 butterflies,
and each board has 32 chips. However, the theory developed
in this article is completely general and produces a modular,
hierarchical partitioning of any size deBruijn graph into any
number of first-level and second-level subgraphs (boards and
chips). The exposition of the theory and the examples in this
article are selected without reference to a specific configura-
t ion of the DSN’s new decoder.

l

II. Butterflies and deBruijn Graphs
All 2 K - 1 states in a constraint length K Viterbi decoder are

labeled with (K -])-bit binary strings. An add-compare-select
circuit takes as inputs the accumulated metrics of two states
whose labels differ only in the rightmost bit. Each of these
accumulated metrics has a different branch metric added to it
and the smaller of the two sums is selected.

Two add-compare-select circuits take inputs from the same
pair of states. The output of one of these goes to a state
obtained by discarding the rightmost bit of the input states
and prefixing a 0 on the left. The output of the other add-
compare-select circuit goes to the state defined similarly but
with a prefixed I instead of 0. These two add-compare-select
circuits group to form a butterfly, depicted in Fig. 1. The
butterfly has two input wires and two output wires for trans-
mission of accumulated metrics. The butterfly needs only four
wires, because its two add-compare-select circuits get their
inputs from the same pair of states. Also, it can be shown [4]
that a butterfly’s two add-compare-select circuits can share the
same hardware for computing branch metrics. These facts
make butterflies natural elements to work with.

I

edge is labeled by a (K - 1)-bit binary string.’ Each node is
connected to four other nodes via four directed edges. A node
receives its inputs via the pair of edges obtained by appending
a 0 or I to the right of the node’s label, and it sends its out-
puts via the pair of edges obtained by prefixing a 0 or 1 to the
left of the node’s label. A diagram of the connections for an
arbitrary butterfly is given in Fig. 2.

111. Wiring Approaches
The full deBruijn graph of 2K-2 butterflies requires exactly

2K-1 wires for the exchange of accumulated metrics. This
total number of connections cannot be increased or reduced
by any wiring scheme. However, it is advantageous to capture
as many of these required connections as possible within iden-
tical, small, modular units (chips and boards). Wires internal to
modules can be implemented by duplicating the small module’s
simple wiring diagram, while external wires between modules
must be implemented wire-by-wire.

One mathematically appealing way of creating identical
modular units that incorporate a reasonable proportion of
internal wires is to exploit one of the Hamiltonian paths [3]
of the deBruijn graph. One of the two outputs of each butter-
fly is connected to one of the two inputs of another butterfly
in a big ring (Fig. 3a). This ring contains all of the butterflies
and half of their connections. The remaining half of the con-
nections form an irregular pattern across the interior of the
ring, as illustrated in Fig. 3(a). Identical modules can be con-
structed by slicing the Hamiltonian ring into equal-size linear
segments (Fig. 3b). Almost half of the wires required for
accumulated metric exchange can be implemented internally
within the modules.

A second wiring approach is based on FFT-type connection
patterns. Modules (chips and boards) are constructed from dis-
joint subsets of butterflies called roob. Each module contains
its root butterflies, first-generation descendants of these roots,
descendants of these descendants, and so forth. The descen-
dants of a butterfly are the two butterflies to which it sends its
outputs. The module contains all descendants at each genera-
tion except those that are roots of another module.

If a set of 2 root butterflies is consecutive in the last b bits
(i.e., the last b bits take on all possible values and all other bits
are the same), then their descendants through b generations
are a block of butterflies obtained by cyclic shifting the roots
by b bits or less. A module containing the roots and all of

A butterfly is labeled by dropping the rightmost bit of the
label Of either Of its input states’ The butterfly connection
diagram is a deBruijn graph with 2K-2 nodes. Each node in
this graph is labeled by a (K - 2)-bit binary string and each

‘In the remainder of this article, the terms butterfly, node, butterfly
label, and node label will be used interchangeably, as will the terms
state, wire, edge, state label, and edge label.

94

these descendants would have (b t 1)2b butterflies and the
same connection pattern as an ordinary signal processing FFT
of (b t 1) stages, as shown in Fig. 4. This cyclic shifting may,
however, generate one of the input strings. Unfortunately, it is
impossible to completely partition any deBruijn graph into
non-overlapping full-FFT modules. A module’s connection dia-
gram must be punctured at those nodes corresponding to root
nodes of another module. The result is a crenellated-FFT con-
nection pattern, a subgraph of a full FFT.

If the root butterflies are selected wisely, most of the
full decoder’s 2K-2 butterflies are found in some module’s
crenellated-FFT diagram. However, some butterflies do not
belong to any crenellated FFT. These butterflies are free in
the sense that their wiring is not specified by the crennellated-
FFT construction. The free butterflies must physically reside
within modules, but their connections to other butterflies
must be implemented by external wiring (outside the modules),
or else the modules’ internal wiring would not be identical.

A module based on the crenellated-FFT construction thus
contains two types of butterflies. The majority of butterflies
belong to a crenellated-FFT pattern, and some or all of their
required connections are implemented by internal wiring
(within the module) which is identical from module to module.
The remaining free butterflies typically have no internal con-
nections, but instead communicate via four external pins (two
for input and two for output). The pin reductions which free-
butterfly interconnections make possible are trivial.

For the DSN’s new Viterbi decoder, the set of root butter-
flies is taken to be the set of all 2K-“ butterflies having the
common prefix 10. This selection of root butterflies works
well (i.e., captures a large fraction of wires within modules) for
module sizes from 2 4 to about 2 9 butterflies., The full block
of root butterflies is subdivided into consecutive blocks of
roots for board modules, which are further subdivided into
consecutive blocks of roots for the chip modules on each
board. The crenellated FFTs generated from these root butter-
flies are hierarchical in the sense that the crenellated FFT for
the board is constructed without breaking any of the connec-
tions in the crenellated FFTs for the chips on the board.

A single shift of a string having 10 as a prefix cannot pro-
duce another string having 10 as a prefix. Hence, for modules
constructed from Bo = 2 b consecutive root butterflies with
the prefix 10, the number B, of first-generation descendants in

the crenellated FFT equals the number of roots Bo. The num-
ber of butterflies Bg in each succeeding generation, g, of the
crenellated FFT is given by the linear recurrence

for 2 < g < b = log, Bo. The module only contains descen-
dants through the bth generation; (b + 1)th-generation descen-
dants cannot be included because their parent nodes belong to
two different modules. It can be shown by evaluating the
recursion formula that the number of free butterflies is b t 3
and the total number of butterflies in the module (free butter-
flies plus butterflies in the crenellated FFT) is 2b+2 or four
times the number of roots. The number of external wires3
leading off the module is 2b+2 t 4(b t 3), an average of 1
t (b t 3)2-* external wires per butterfly on the module.

Figure 5 shows the connection diagram for a 32-butterfly
chip module based on roots with the prefix 10. The crenel-
lated FFT is on the left and the six free butterflies on the right
have all their wires leading off chip. The crenellated FFT for
the chip starts with eight root butterflies and continues for
three generations of descendants from these roots. The crenel-
lated FFT resembles an ordinary 8 X 4-stage FFT, except for
punctures eliminating six of the nodes. The number of exter-
nal wires per 32-butterfly chip is 56.

Figure 6 shows the connection pattern for a 512-butterfly
board module based on roots with the prefix IO. The crenel-
lated FFT contains 128 roots and 7 generations of descendants.
The 128 X 8-stage ordinary FFT template is obvious, even
though over half the nodes from this template are missing in
the crenellated version. The crenellated-FFT structure includes
502 of the board module’s 512 butterflies, leaving just 10 free
butterflies per board. The number of external wires per 512-
butterfly board is 552, just over 1 wire per butterfly (about
half as many external wires as for a same-size module based on
the Hamiltonian path construction).

Figures 5 and 6 illustrate how the definition of the first-
level subgraph (a board) is completely consistent with the
definition of the second-level subgraph (a chip). The 512-
butterfly board in Fig. 6 is built from sixteen of the 32-
butterfly chips in Fig. 5 . In Fig. 6 arrows correspond to chip
pins, and unconnected arrows represent board pins (which
must be connected to pins on other boards via the backplane).
Heavy lines represent wires on the board between chip pins,

’01 would have been an equally good choice, but not 00 or 11. Other
prefixes (such as 100) or combinations of prefixes (such as 100,IlOI)
work better for larger modules. A full discussion of the efficiencies of
various root selections is beyond the scope of this article.

3External wire and pin counts quoted in this article refer only to the
wires required for exchange of accumulated metrics and do not include
additional wires and pins needed for power and so forth.

95

and thin lines represent internal connections within the c h p .
Pictorially, the crenellated-FFT portions of eight of the six-
teen chips in Fig. 6 are identical copies of the crenellated-FFT
portion of the c h p in Fig. 5 , and the crenellated-FFT portions
of the other eight chips are depicted by their mirror images
(for convenience of display). Similarly, the depictions of the
six free butterflies in each chip are displaced horizontally by
varying amounts to emphasize the crenellated-FFT structure
of the board.

The hierarchical nature of the crenellated-FFT construction
holds not just for 32-butterfly chips and 512-butterfly boards
but also for all other module sizes 2b+2. Each module con-
structed from consecutive roots with the prefix IO can be
built from two modules half its size constructed from the same
type of roots.

IV. Butterfly Addressing
Each butterfly, described by a (K - 2)-bit binary string,

must be assigned a (K - 2)-bit address or location. The full
address specifies the butterfly’s exact position in the modular
hierarchy. The most significant bits of the address correspond
to the butterfly’s board and chip location. For example, in
a 24-board/2 8-chip configuration for a constraint length 15
decoder (2 l 3 total butterflies), the four most significant bits
of the address specify the board, and the next four bits specify
the chip within a board. The five least significant bits of the
address specify the position of the butterfly within a chip.

The addressing formula is somewhat arbitrary, but it must
satisfy two basic conditions: (1) it must be a one-to-one map-
ping from (K - 2)-bit butterflies to (K - 2)-bit addresses and
(2) it must be consistent with the partition of the deBruijn
graph into crenellated FFTs, i.e., all butterflies assigned to
certain chip and board locations by the crenellated-FFT con-
struction should be mapped to those same locations by the
addressing formula. Free butterflies may be mapped to any
convenient free address.

The specification of a butterfly’s (K - 2)-bit address pro-
ceeds as follows. First, compute the butterfly’s partial address
by dropping from its (K - 2)-bit label all of the most signifi-
cant bits through and including the first occurrence of the
string 10. The partial address consists of all the bits to the
right of the first IO, and it is empty if there is no occurrence
of 10 in the butterfly’s (K - 2)-bit label or if 10 first occurs
in the two least significant bits, The partial address is the only
part of the full address that is specified by the crenellated-FFT
partition. For example, in a 28-chip decoder, a partial address
of 8 bits will determine exactly which chip a given butterfly
belongs to , but a butterfly with a partial address of 7 bits or

less is one of the free butterflies that is not assigned to any
chip’s crenellated FFT.

The partial address sets the most significant bits of a butter-
fly’s full address. The remaining part of the address, called
arbitrary bits, is completely arbitrary in the sense that any
choice will be consistent with the crenellated-FFT construc-
tion. However, the arbitrary bits for all butterflies must be
chosen in a way that assigns each (K - 2)-bit butterfly to a
unique (K - 2)-bit address. One simple rule for guaranteeing
a one-to-one mapping is to choose the arbitrary bits as the
reversal of the most significant bits (through and including the
first occurrence of 10) that were dropped to extract the partial
address. Then,

butterfly = (prefix, partial address)

= suffix), partial address)

address = (partial address, suffix)

= (partial address, p(prefix))

where suffix are the arbitrary bits and prefix are the most
significant bits of butterfly up to and including the first occur-
rence of 10. The notations p(prefix) and p(suffix) denote the
reversals of the indicated bit strings. For example, butterfly =
(abcde 10, fghijk) gives address = Cfghijk,Oledcba), assuming
that abcde does not contain the string IO.

This rule produces a one- tome mapping because it is
obviously invertible. Given any (K - 2)-bit address, first deter-
mine the partial address by dropping all of the least significant
bits through and including the last occurrence of 01. The
dropped bits are the arbitrary bits. Now compute the unique
butterfly label corresponding to that address by concatenating
the reverse of the arbitary bits with the partial address.

V. Making Full Decoders from Chips
and Boards

The board and chip modules defined by the crenellated-FFT
construction have the property that full Viterbi decoders of
all sizes at least equal to the size of the module can be con-
structed by appropriately connecting identical copies of the
module, without revising the internal wiring within any
module. Figure 7 shows a 32-butterfly chip wired as a con-
straint length 7 decoder, and Fig. 8 shows two 32-butterfly
chips wired as a constraint length 8 decoder. Arrows corres-
pond to chip pins and heavy lines represent external wires
between chip pins. Thin lines represent internal connections
within the chip. Note that many of the heavy lines in Fig. 8
connect butterflies within the same chip, as do all the heavy

96

lines in Fig. 7. However, these connections cannot be incorpo-
rated internally within the chip, because the chip would no
longer be a universal module, i.e., some larger constraint
length decoder could not be built from the more tightly
wired chips.

VI. Bounds, Improvements, and Further
Applications

There exist lower bounds [4] on the number of edges
crossing cuts which divide the nodes of a deBruijn graph
into sets of equal or almost equal cardinality. These follow
from the very small number of short cycles in the graph and
do not depend on the sets having identical internal connec-
tions. The present board design is less than a factor of two
away from these bounds.

Chip and board modules may include some additional inter-
nal connections if they are destined only for a particular size
of decoder (e.g., just the constraint length 15 decoder). Also,
by restricting the decoder to constraint lengths 15 and larger
and allowing one of the boards to be different from the others,
the number of wires between boards can be reduced without

changing the chips. These facts offer some flexibility if the
backplane presents unexpected wiring problems.

There are additional applications for these results unrelated
to building Viterbi decoders. For example, the modular decom-
position of the deBruijn graph might be useful for building
very big spectrum analyzers and multipliers based on the
Schronager-Strassen algorithm [5] .

VII. Summary
A novel partition of the deBruijn graph inspired by the

problem of building a large constraint length Viterbi decoder
has been introduced. The full decoder is built from identical
subgraphs called boards, which in turn are built from identical
subgraphs called chips. The system is modular and hierarchical,
and it implements a large proportion of the required wiring
internally within modules. This results in a simpler design,
reduced cost, and improved testability and repairability. A
constraint length 15 decoder that uses 512 identical VLSI
chips and 16 identical printed circuit boards based on this
partitioning is a feasible design for decoding at a speed of
1 Mbitlsec.

References

[l] J. Statman, G. Zimmerman, F. Pollara, and 0. Collins, “A Long Constraint Length
VLSI Viterbi Decoder for the DSN,” TDA Progress Report 42-95, vol. July-
September 1988, Jet Propulsion Laboratory, Pasadena, California, pp. 134-142,
November 15, 1988.

R. J . McEliece, The Theow of Information and Coding, Massachusetts: Cambridge
Press, 1977.

S. W. Golomb, Shift Register Sequences, California: Aegean Park Press, 1982.

0. Collins, Coding Techniques for Low Signal-to-Noise Ratios, Ph.D. Thesis, Cali-
fornia Institute of Technology, in preparation.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Massachusetts: Addison Wesley, 1974.

[2]

[3]

[4]

[5]

97

STATE
xx ... xxxo

xx ... xxxl

BRANCH METRIC

+ oxx ... xxx

K-1 BITS
-

- l x x ... xxx

A ADDER
C COMPARATOR

xx ... xxx BUTTERFLY NAME

Fig. 1. The innards of a butterfly.

Oax ... x b
x...xbO

ax ... xb

lax ... x

Fig. 2. Butterfly connections and labels.

98

(+++a+

Fig. 3. (a) Butterfly connection topology for a 32-node deBruijn graph Hamiltonian path;
(b) a linear module.

99

Fig. 4. Connection diagram for an 8 x &stage ordinary FFT.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CRENELLATED FFT x
FREE
BUTTERFLIES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L ---------------- - --------_-__ _1

x- BUTTER FLY - CHIP INPUT PIN

INTERNAL CHIP CONNECTION - CHIP OUTPUT PIN

Fig. 5. Connection diagram for a 32-butterfly chip.

100

CHIP XO

CHIP #7

Fig. 6. Connection diagram for a 512-butterfly board.

101

ORIGINAL PAGE IS
OF POOR QUALITY

BUTTERFLY AT LOCATION n

INTERNAL CHIP CONNECTION

EXTERNAL (BOARD) WIRE

__)__ CHIP INPUT PIN - CHIP OUTPUT PIN

LOCAT ION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

BUTTERFLY

00000
10000
01000
1 1000
00 1 00
1 000 1
01 100
11100
00010
10010
01001
11001
00110
1001 1
01110
11110

LOCATION

16
17
18
19
20
21
22
23
24
25
26
27

29
30
31

28

BUTTERFLY

00001
10100
01010
11010
00101
10101
01 101
11 101
0001 1
101 10
0101 1
1101 1
001 11
10111
01111
11111

Fig. 7. A 32-butterfly chip, wired as a K = 7 decoder.

102

ORIGINAL PAGE IS
OF POOR QUALITY

RELATIVE
LOCATION

0
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15

BUTTERFLY
000000
100000
0 1 0000
1 10000
001000
100001
01 1000
1 1 1000
000100
100010
010001
110001
001 100
100011
011100
111100

BUTTERFLY AT RELATIVE LOCATION n (RELATIVE LOCATION WITHIN CHIP)

INTERNAL CHIP CONNECTION - CHIP INPUT PIN - EXTERNAL (BOARD) WIRE - CHIP OUTPUT PIN

CHIP rO

RELATIVE
LOCATION

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

BUTTERFLY
000010
100100
010010
110010
001001
100101
01 1001
1 1 1001
0001 10
100110
01001 1
110011
001 110
100111
011110
111110

RELATIVE
LOCATION

0
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15

CHIP nl

RE LATlVE
BUTTERLY LOCATION
000001 16
101000 17
010100
110100
001010
101001
011010
111010
000101

18
19
20
21
22
23
24

101010 25
010101 26
110101 27
001 101 28
101011 29
01 1101 30
111101 31

CHIP
31

CHIP
*O

BUTTERFLY
00001 1
101100
010110
1101 10
001011
101101
01 101 1
111011
0001 1 1
101110
010111
110111
001111
101111
011111
1 1 1 1 1 1

Fig. 8. Two 32-butterfly chips, wired as a K = 8 decoder.

103

